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Issues related to concepts and categorization are nearly ubiq-
uitous in psychology because of people’s natural tendency to
perceive a thing as something. We have a powerful impulse to
interpret our world. This act of interpretation, an act of “seeing
something as X” rather than simply seeing it (Wittgenstein,
1953), is fundamentally an act of categorization.

The attraction of research on concepts is that an extremely
wide variety of cognitive acts can be understood as catego-
rizations. Identifying the person sitting across from you at the
breakfast table involves categorizing something as (for exam-
ple) your spouse. Diagnosing the cause of someone’s illness
involves a disease categorization. Interpreting a painting as a
Picasso, an artifact as Mayan, a geometry as non-Euclidean,
a fugue as baroque, a conversationalist as charming, a wine
as a Bordeaux, and a government as socialist are categoriza-
tions at various levels of abstraction. The typically unspoken
assumption of research on concepts is that these cognitive acts
have something in common. That is, there are principles that
explain many or all acts of categorization. This assumption is
controversial (see Medin, Lynch, & Solomon, 2000), but is
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perhaps justified by the potential payoff of discovering
common principles governing concepts in their diverse
manifestations.

The desirability of a general account of concept learning
has led the field to focus its energy on what might be called
generic concepts. Experiments typically involve artificial
categories that are (it is hoped) unfamiliar to the subject.
Formal models of concept learning and use are constructed
to be able to handle any kind of concept irrespective of its
content. Although there are exceptions to this general trend
(Malt, 1994; Ross & Murphy, 1999), much of the main-
stream empirical and theoretical work on concept learning is
concerned not with explaining how particular concepts are
created, but with how concepts in general are represented
and processed.

One manifestation of this approach is that the members of
a concept are often given an abstract symbolic representation.
For example, Table 22.1 shows a typical notation used to de-
scribe the stimuli seen by a subject in a psychological exper-
iment or presented to a formal model of concept learning.
Nine objects belong to two categories, and each object is de-
fined by its value along four binary dimensions. In this nota-
tion, objects from Category A typically have values of 1 on
each of the four dimensions, whereas objects from Category
B have values of 0. The dimensions are typically unrelated to
each other, and assigning values of 0 and 1 to a dimension is
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TABLE 22.1 A Common Category Structure, Originally Used by
Medin and Schaffer (1978)

Dimension

Category Stimulus D1 D2 D3 D4

Category A Al 1 1 1 0
A2 1 0 1 0
A3 1 0 1 1
A4 1 1 0 1
AS 0 1 1 1

Category B Bl 1 1 0 0
B2 0 1 1 0
B3 0 0 0 1
B4 0 0 0 0

arbitrary. For example, for a color dimension, red may be as-
signed a value of O and blue a value 1. The exact category
structure of Table 22.1 has been used in at least 30 studies (re-
viewed by J. D. Smith & Minda, 2000), instantiated by stim-
uli as diverse as geometric forms (Nosofsky, Kruschke, &
McKinley, 1992), cartoons of faces (Medin & Schaffer,
1978), yearbook photographs (Medin, Dewey, & Murphy,
1983), and line drawings of rocket ships (Nosofsky, Palmeri, &
McKinley, 1994). These authors are not particularly inter-
ested in the category structure of Table 22.1 and are certainly
not interested in the categorization of rocket ships per se.
Instead, they choose their structures and stimuli so as to be
(a) unfamiliar (so that learning is required), (b) well con-
trolled (dimensions are approximately equally salient and
independent), (c) diagnostic with respect to theories, and
(d) potentially generalizable to natural categories that people
learn. Work on generic concepts is very valuable if it turns
out that there are domain-general principles underlying
human concepts that can be discovered. Still, there is no a
priori reason to assume that all concepts will follow the same
principles, or that we can generalize from generic concepts to
naturally occurring concepts.

WHAT ARE CONCEPTS?

Concepts, Categories, and Internal Representations

A good starting place is Edward E. Smith’s (1989) character-
ization that a concept is ““a mental representation of a class or
individual and deals with what is being represented and how
that information is typically used during the categorization”
(p. 502). It is common to distinguish between a concept and a
category. A concept refers to a mentally possessed idea or no-
tion, whereas a category refers to a set of entities that are
grouped together. The concept dog is whatever psychological
state signifies thoughts of dogs. The category dog consists of

all the entities in the real world that are appropriately catego-
rized as dogs. The question of whether concepts determine
categories or vice versa is an important foundational contro-
versy. If one assumes the primacy of external categories of
entities, then one will tend to view concept learning as the en-
terprise of inductively creating mental structures that predict
these categories. One extreme version of this view is the ex-
emplar model of concept learning (Estes, 1994; Medin & '
Schaffer, 1978; Nosofsky, 1984; see also Capaldi’s chapter in
this volume), in which one’s internal representation for a
concept is nothing more than the set of all of the externally -
supplied examples of the concept to which one has been .
exposed. If one assumes the primacy of internal mental °
concepts, then one tends to view external categories as the
end product of applying these internal concepts to observed
entities. An extreme version of this approach is to argue that
the external world does not inherently consist of rocks, dogs, :
and tables; these are mental concepts that organize an other-
wise unstructured external world (Lakoff, 1987).

Equivalence Classes

Another important aspect of concepts is that they are equiva- |
lence classes. In the classical notion of an equivalence class,
distinguishable stimuli come to be treated as the same thing
once they have been placed in the same category (Sidman,
1994). This kind of equivalence is too strong when it comes )
to human concepts because even when we place two objects
into the same category, we do not treat them as the same thing
for all purposes. Some researchers have stressed the intrinsic
variability of human concepts—variability that makes it un-
likely that a concept has the same sense or meaning each time
it is used (Barsalou, 1987; Thelen & Smith, 1994). Still, it is
impressive the extent to which perceptually dissimilar thingé 3
can be treated equivalently, given the appropriate conceptual-
ization. To the biologist armed with a strong mammal con—f
cept, even whales and dogs may be treated as equivalent in’
many situations related to biochemistry, child rearing, and
thermoregulation. Even sea lions may possess equivalencé j
classes, as Schusterman, Reichmuth, and Kastak (2000) hav ¢
argued that these animals show free substitution between tw 3
entities once they have been associated together. 4
Equivalence classes are relatively impervious to sup'etﬂ;
cial similarities. Once one has formed a concept that treats
skunks as equivalent for some purposes, irrelevant variations
among skunks can be greatly deemphasized. When subj
are told a story in which scientists discover that an ani
that looks exactly like a raccoon actually contains the inte
organs of a skunk and has skunk parents and skunk childres
they often categorize the animal as a skunk (Keil, 19 /




Rips, 1989). People may never be able to transcend superfi-
cial appearances when categorizing objects (Goldstone,
1994a), nor is it clear that they would want to (Jones &
Smith, 1993). Still, one of the most powerful aspects of con-
cepts is their ability to make superficially different things
alike (Sloman, 1996). If one has the concept Things to re-
move from a burning house, even children and jewelry be-
come similar (Barsalou, 1983). The spoken phonemes /d/ /o/
/g/, the French word chien, the written word dog, and a pic-
ture of a dog can all trigger one’s concept of dog (Snodgrass,
1984), and although they may trigger slightly different repre-
sentations, much of the core information will be the same.
Concepts are particularly useful when we need to make con-
nections between things that have different apparent forms.

WHAT DO CONCEPTS DO FOR US?

Fundamentally, concepts function as filters. We do not have
direct access to our external world. We have access to our
world only as filtered through our concepts. Concepts are use-
ful when they provide informative or diagnostic ways of
structuring this world. An excellent way of understanding the
mental world of an individual, group, scientific community, or
culture is to find out how they organize their world into con-
cepts (Lakoff, 1987; Medin & Atran, 1999; Wolff, Medin, &
Pankratz, 1999).

Components of Thought

Concepts are cognitive elements that combine to generatively
produce an infinite variety of thoughts. Just as a finite set of
building blocks can be constructed into an endless variety of
architectural structures, so can concepts act as building
blocks for an endless variety of complex thoughts. Claiming
that concepts are cognitive elements does not entail that they
are primitive elements in the sense of existing without being
learned and without being constructed from other concepts.
Some theorists have argued that concepts such as bachelor,
kill, and house are primitive in this sense (Fodor, 1975;
Fodor, Garrett, Walker, & Parkes, 1980), but a considerable
! body of evidence suggests that concepts typically are ac-
quired elements that are themselves decomposable into se-
i mantic elements (McNamara & Miller, 1989).

;  Once a concept has been formed, it can enter into compo-
i sitions with other concepts. Several researchers have studied
. how novel combinations of concepts are produced and com-
prehended. For example, how does one interpret the term
buffalo paper when one first hears it? Is it paper in the shape
of buffalo, paper used to wrap buffaloes presented as gifts, an
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essay on the subject of buffalo, coarse paper, or something
like fly paper but used to catch bison? Interpretations of word
combinations are often created by finding a relation that con-
nects the two concepts. In Murphy’s (1988) concept special-
ization model, one interprets noun-noun combinations by
finding a variable that the second noun has that can be filled
by the first noun. By this account, a robin snake might be in-
terpreted as a snake that eats robins once robin is used to the
fill the eats slot in the snake concept. Wisniewski (1997,
1998; Wisniewski & Love, 1998) has argued that properties
from one concept are often transferred to another concept,
and that this is more likely to occur if the concepts are simi-
lar, with parts that can be easily aligned. By this account, a
robin snake may be interpreted as a snake with a red belly,
once the attribute red breast from the robin is transferred to
the snake.

In addition to promoting creative thought, the combinato-
rial power of concepts is required for cognitive systematicity
(Fodor & Pylyshyn, 1988). The notion of systematicity is that
a system’s ability to entertain complex thoughts is intrinsi-
cally connected to its ability to entertain the components of
those thoughts. In the field of conceptual combination, this
has appeared as the issue of whether the meaning of a combi-
nation of concepts can be deduced on the basis of the mean-
ings of its constituents. On the one hand, there are some
salient violations of this type of systematicity. When adjec-
tive and noun concepts are combined, there are sometimes
emergent interactions that cannot be predicted by the “main
effects” of the concepts themselves. For example, the concept
gray hair is more similar to white hair than to black hair,
but gray cloud is more similar to black cloud than to white
cloud (Medin & Shoben, 1988). Wooden spoons are judged
to be fairly large (for spoons), even though this property is
not generally possessed by wooden objects or spoons in gen-
eral (Medin & Shoben, 1988). On the other hand, there have
been notable successes in predicting how well an object fits a
conjunctive description based on how well it fits the individ-
ual descriptions that comprise the conjunction (Hampton,
1987, 1997; Storms, De Boeck, Hampton, & Van Mechelen,
1999). A reasonable reconciliation of these results is that
when concepts are combined the concepts’ meanings system-
atically determine the meaning of the conjunction, but emer-
gent interactions and real-world plausibility also shape the
conjunction’s meaning.

Inductive Predictions

Concepts allow us to generalize our experiences with some
objects to other objects from the same category. Experience
with one slobbering dog may lead one to suspect that an
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unfamiliar dog may have the same proclivity. These inductive
generalizations may be wrong and can lead to unfair stereo-
types if inadequately supported by data, but if an organism is
to survive in a world that has some systematicity, it must “go
beyond the information given” (Bruner, 1973) and generalize
what it has learned. The concepts we use most often are useful
because they allow many properties to be predicted induc-
tively. To see why this is the case, we must digress slightly and
consider different types of concepts. Categories can be
arranged roughly in order of their grounding by similarity:
natural kinds (dog and oak tree), man-made artifacts (ham-
mer, airplane, and chair), ad hoc categories (things to take
out of a burning house, and things that could be stood on to
reach a lightbulb), and abstract schemas or metaphors (e.g.,
events in which a kind action is repaid with cruelty,
metaphorical prisons, and problems that are solved by
breaking a large force into parts that converge on a tar-
get). For the latter categories, members need not have very
much in common at all. An unrewarding job and a relationship
that cannot be ended may both be metaphorical prisons, but
the situations may share little other than this.

Unlike ad hoc and metaphor-based categories, most nat-
ural kinds and many artifacts are characterized by members
that share many features. In a series of studies, Rosch (Rosch,
1975; Rosch & Mervis, 1975; see also the chapters in this
volume by Palmer and by Treiman, Clifton, Meyer, & Wurm)
has shown that the members of natural kind and artifact
“basic-level” categories such as chair, trout, bus, apple, saw,
and guitar are characterized by high within-category overall
similarity. Subjects listed features for basic-level categories,
as well as for broader superordinate (e.g., furniture) and nar-
rower subordinate (e.g., kitchen chair) categories. An index
of within-category similarity was obtained by tallying the
number of features listed by subjects that were common to
items in the same category. Items within a basic-level cate-
gory tend to have several features in common, far more than
items within a superordinate category and almost as many
as items that share a subordinate categorization. Rosch
(Rosch & Mervis, 1975; Rosch, Mervis, Gray, Johnson, &
Boyes-Braem, 1976) argues that categories are defined by
family resemblance; category members need not all share a
definitional feature, but they tend to have several features in
common. Furthermore, she argues that people’s basic-level
categories preserve the intrinsic correlational structure of the
world. All feature combinations are not equally likely. For
example, in the animal kingdom, flying is correlated with lay-
ing eggs and possessing a beak. There are “clumps” of fea-
tures that tend to occur together. Some categories (e.g.,
ad hoc categories) do not conform to these clumps, but many
of our most natural-seeming categories do.

These natural categories also permit many inductive infer-
ences. If we know something belongs to the category dog,
then we know that it probably has four legs and two eyes, eats
dog food, is someone’s pet, pants, barks, is bigger than a
breadbox, and so on. Generally, natural-kind objects, particu-
larly those at Rosch’s basic level, permit many inferences.
Basic-level categories allow many inductions because
their members share similarities across many dimensions or
features. Ad hoc categories and highly metaphorical cate-
gories permit fewer inductive inferences, but in certain situa-
tions the inferences they allow are so important that the
categories are created on a “by-need” basis. One interesting
possibility is that all concepts are created to fulfill an induc-
tive need, and that standard taxonomic categories such as
bird and hammer simply become automatically triggered :
because they have been used often, whereas ad hoc cate-
gories are created only when specifically needed (Barsalou, |
1982, 1991). In any case, evaluating the inductive potential '
of a concept goes a long way toward understanding why we :
have the concepts that we do. The single concept peaches,
llamas, telephone answering machines, or Ringo Starr is .
an unlikely concept because belonging in this concept pre~
dicts very little. Several researchers have been formally de«
veloping the notion that the concepts we possess are those
that maximize inductive potential (Anderson, 1991; Heit;
2000; Oaksford & Chater, 1998). 'Y

Communication

Communication between people is enormously facilitated ifl
the people can count upon sharing a set of common concepts
By uttering a simple sentence such as “Ed is a football player;;
one can transmit a wealth of information to a colleague, deal§
ing with the probabilities of Ed’s being strong, having violeagj
tendencies, being a college physics or physical educatiog
major, and having a history of steroid use. Markman a
Makin (1998) have argued that a major force in shaping o
concepts is the need to communicate efficiently. They find thef
a person’s concepts become more consistent and systema i
over time in order to establish reference unambiguously fef
another individual with whom they need to communica
(see also Garrod & Doherty, 1994).

Cognitive Economy

We can discriminate far more stimuli than those for which 4§
have concepts. For example, estimates suggest that we og
perceptually discriminate at least 10,000 colors from egy
other, but we have far fewer color concepts than
Dramatic savings in storage requirements can be achiev



encoding concepts rather than entire raw (unprocessed) in-
puts. A classic study by Posner and Keele (1967) found that
subjects code letters such as A by a raw, physical code, but
that this code rapidly (within 2 s) gives way to a more ab-
stract conceptual code that A and a share. Huttenlocher,
Hedges, and Vevea (2000) develop a formal model in which
judgments about a stimulus are based on both its category
membership and its individuating information. As predicted
by the model, when subjects are asked to reproduce a stimu-
lus, their reproductions reflect a compromise between the
stimulus itself and the category to which it belongs. When a
delay is introduced between seeing the stimulus and repro-
ducing it, the contribution of category-level information rela-
tive to individual-level information increases (Crawford,
Huttenlocher, & Engebretson, 2000). Together with studies
showing that, over time, people tend to preserve the gist of a
category rather than the exact members that constitute it
(e.g., Posner & Keele, 1970), these results suggest that
through the preservation of category-level information rather
than individual-level information, efficient long-term repre-
sentations can be maintained.

From an information-theory perspective, storing a cate-
gory in memory rather than a complete description of an
individual is efficient because fewer bits of information are
required to specify the category. For example, Figure 22.1
depicts a set of objects (shown by circles) described along
two dimensions. Rather than preserving the complete de-
scription of each of the 19 objects, one can create a reason-
ably faithful representation of the distribution of objects by
storing only the positions of the four triangles in Figure 22.1.
This kind of information reduction is particularly significant
because computational algorithms exist that can automati-
cally form these categories when supplied with the objects
(Kohonen, 1995). For example, the competitive learning al-
gorithm (Rumelhart & Zipser, 1985) begins with random po-
sitions for the triangles, and when an object is presented, the
triangle that is closest to the object moves its position even

Figure 22.1 Alternative proposals have suggested that categories are rep-
resented by the individual exemplars in the categories (the circles), the pro-
totypes of the categories (the triangles), or the category boundaries (the lines
dividing the categories).
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closer to the object. The other triangles move less quickly, or
do not move at all, leaving them free to specialize for other
classes of objects. In addition to showing a way in which ef-
ficient category representations can be created, this algorithm
has been put forth as a model of how a person creates cate-
gories even when there is no teacher, parent, or label that tells
the person what, or how many, categories there are.

The above argument suggests that concepts can be used to
conserve memory. An equally important economizing advan-
tage of concepts is to reduce the need for learning (Bruner,
Goodnow, & Austin, 1956). An unfamiliar object that has not
been placed in a category attracts attention because the
observer must figure out how to think of it. Conversely, if an
object can be identified as belonging to a preestablished cate-
gory, then less cognitive processing is typically necessary.
One can simply treat the object as another instance of some-
thing that is known, updating one’s knowledge slightly, if at
all. The difference between events that require altering one’s
concepté and those that do not was described by Piaget
(1952) in terms of accommodation (adjusting concepts on the
basis of a new event) and assimilation (applying already
known concepts to an event). This distinction has also been
incorporated into computational models of concept learning
that determine whether an input can be assimilated into a pre-
viously learned concept. If it cannot, then reconceptualiza-
tion is triggered (Grossberg, 1982). When a category instance
is consistent with a simple category description, then an indi-
vidual is less likely to store a detailed description of it than if
it is an exceptional item (Palmeri & Nosofsky, 1995), consis-
tent with the notion that people simply use an existing cate-
gory description when it suffices.

HOW ARE CONCEPTS REPRESENTED?

Much of the research on concepts and categorization re-
volves around the issue of how concepts are mentally repre-
sented. As with all discussion of representations, the standard
caveat must be issued—mental representations cannot be de-
termined or used without processes that operate on these
representations (Anderson, 1978). Rather than discussing
the representation of a concept such as cat, we should discuss
a representation-process pair that allows for the use of this
concept. Empirical results interpreted as favoring a particular
representation format should almost always be interpreted as
supporting a particular representation given particular
processes that use the representation. As a simple example,
when trying to decide whether a shadowy figure briefly
glimpsed was a cat or fox, one needs to know more than how
one’s cat and fox concepts are represented. One needs to
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know how the information in these representations is inte-
grated to make the final categorization. Does one wait for the
amount of confirmatory evidence for one of the animals to
rise above a certain threshold (Busemeyer & Townsend,
1993)? Does one compare the evidence for the two animals
and choose the more likely (Luce, 1959)? Is the information
in the candidate animal concepts accessed simultaneously or
successively? Probabilistically or deterministically? These
are all questions about the processes that use conceptual rep-
resentations. One reaction to the insufficiency of representa-
tions alone to account for concept use has been to dispense
with all reference to independent representations, and instead
to frame theories in terms of dynamic processes alone
(Thelen & Smith, 1994; van Gelder, 1998). However, some
researchers feel that this is a case of throwing out the baby
with the bath water, and insist that representations must still
be posited to account for enduring, organized, and rule-
governed thought (Markman & Dietrich, 2000).

Rules

There is considerable intuitive appeal to the notion that con-
cepts are represented by something like dictionary entries. By
a rule-based account of concept representation, to possess the
concept cat is to know the dictionary entry for it. A person’s
cat concept may differ from Webster’s Dictionary entry: “a
carnivorous mammal (Felis catus) long domesticated and
kept as a pet and for catching rats and mice.” Still, this ac-
count claims that a concept is represented by some rule that
allows one to determine whether an entity belongs within the
category (see also the chapter by Leighton & Sternberg in
this volume).

The most influential rule-based approach to concepts may
be Bruner, Goodnow, and Austin’s (1956) hypothesis-testing
approach. Their theorizing was, in part, a reaction against be-
haviorist approaches (Hull, 1920) in which concept learning
involved the relatively passive acquisition of an association
between a stimulus (an object to be categorized) and a re-
sponse (such as a verbal response, key press, or labeling).
Instead, Bruner et al. argued that concept learning typically
involves active hypothesis formation and testing. In a typical
experiment, their subjects were shown flash cards that had
different shapes, colors, quantities, and borders. The sub-
jects’ task was to discover the rule for categorizing the flash
cards by selecting cards to be tested and by receiving feed-
back from the experimenter indicating whether the selected
card fit the categorizing rule. The researchers documented
different strategies for selecting cards, and a considerable
body of subsequent work (e.g., Bourne, 1970) showed large
differences in how easily acquired are different categorization

rules. For example, a conjunctive rule such as white
square is more easily learned than a conditional rule such
if white, then square, which is in turn more easily learn
than a biconditional rule such as white if and only if square.

A parallel development to these laboratory studies of arti-
ficial categories was Katz and Fodor’s (1963) semantic
marker theory of compositional semantics within linguistics..
In this theory, a word’s semantic representation consists of
a list of atomic semantic markers such as +Male, +Adult,
+Physical, and —Married for the word bachelor. These
markers serve as the components of a rule that specifies when
a word is appropriately used. Each of the semantic markers |
for a word is assumed to be necessary for something to be-
long to the word category, and the markers are assumed to be
jointly sufficient to make the categorization.

The assumptions of these rule-based models have been
vigorously challenged for several decades now (see the chap-
ter by Treiman et al. in this volume). Douglas Medin and
Edward E. Smith (Medin & Smith, 1984; E. E. Smith &
Medin, 1981) dubbed this rule-based approach “the classical
view,” and characterized it as holding that all instances of a
concept share common properties that are necessary and suf-
ficient conditions for defining the concept. At least three crit-
icisms have been levied against this classical view.

First, it has proven to be very difficult to specify the defin-
ing rules for most concepts. Wittgenstein (1953) raised this
point with his famous example of the concept game. He ar-
gued that none of the candidate definitions of this concept,
such as activity engaged in for fun, activity with certain rules,
or competitive activity with winners and losers, is adequate
to identify Frisbee, professional baseball, and roulette as
games, while simultaneously excluding wars, debates, televi-
sion viewing, and leisure walking from the game category.
Even a seemingly well-defined concept such as bachelor
seems to involve more than its simple definition of unmarried
male. The counterexample of a 5-year-old child (who does
not really seem to be a bachelor) may be solved by adding an
adult precondition to the unmarried male condition, but an in-
definite number of other preconditions is required to exclude
a man in a long-term but unmarried relationship, the Pope,
and a 80-year-old widower with four children (Lakoff, 1987).
Wittgenstein argued that instead of equating knowing a con-
cept with knowing a definition, it is better to think of the
members of a category as being related by family resem-
blance. A set of objects related by family resemblance need
not have any particular feature in common, but will have sev-
eral features that are characteristic or typical of the set.

Second, the category membership for some objects is
unclear. People may disagree on whether a starfish is a fish, a
camel is a vehicle, a hammer is a weapon, or a stroke is a



disease. By itself, this is not too problematic for a rule-based
- approach. People may use rules to categorize objects, but dif-
| ferent people may have different rules. However, it turns out
that people not only disagree with each other about whether
a bat is mammal—they also disagree with themselves!
McCloskey and Glucksberg (1978) showed that subjects give
surprisingly inconsistent category membership judgments
when asked the same questions at different times. Either there
is variability in how to apply a categorization rule to an ob-
ject, people spontaneously change their categorization rules,
or (as many researchers believe) people simply do not repre-
sent objects in terms of clear-cut rules.

Third, even when a person shows consistency in placing
- objects in a category, he or she might not treat all the objects
as equally good members of that category. By a rule-based
account, one might argue that all objects that match a cate-
gory rule would be considered equally good members of the
category (but see Bourne, 1982). However, when subjects are
asked to rate the typicality of animals such as a robin and an
| eagle for the category bird, or a chair and a hammock for the
category furniture, they reliably give different typicality rat-
ings for different objects. Rosch and Mervis (1975) were able
to predict typicality ratings with respectable accuracy by
asking subjects to list properties of category members, and
measuring how many properties possessed by a category
member were shared by other category members. The magni-
tude of this so-called “family resemblance measure” is posi-
tively correlated with typicality ratings.

Despite these strong challenges to the classical view, the
E rule-based approach is by no means moribund. In fact, in part
due to the perceived lack of constraints in neural network
models that learn concepts by gradually building up associa-
tions, the rule-based approach experienced a rekindling of in-
terest in the 1990s after its low point in the 1970s and 1980s
(Marcus, 1998). Nosofsky and Palmeri (1998; Nosofsky
et al., 1994; Palmeri & Nosofsky, 1995) have proposed a
quantitative model of human concept learning that learns to
classify objects by forming simple logical rules and remem-
bering occasional exceptions to those rules. This work is
reminiscent of earlier computational models of human learn-
ing that created rules such as if white and square, then Cat-
egory 1 from experience with specific examples (Anderson,
Kline, & Beasley, 1979; Medin, Wattenmaker, & Michalski,
1987). The models have a bias to create simple rules, and are
able to predict entire distributions of subjects’ categorization
responses rather than simply average responses.

In defending a role for rule-based reasoning in human
cognition, E. E. Smith, Langston, and Nisbett (1992) pro-
posed eight criteria for determining whether people use ab-
stract rules in reasoning. These criteria include the following:
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“Performance on rule-governed items is as accurate with
abstract as with concrete material”; “performance on rule-
governed items is as accurate with unfamiliar as with famil-
iar material”’; and “performance on a rule-governed item or
problem deteriorates as a function of the number of rules that
are required for solving the problem.” Based on the full set of
criteria, they argue that rule-based reasoning does occur, and
that it may be a mode of reasoning distinct from association-
based or similarity-based reasoning. Similarly, Pinker (1991)
argued for distinct rule-based and association-based modes
for determining linguistic categories. Neurophysiological
support for this distinction comes from studies showing
that rule-based and similarity-based categorization involve
anatomically separate brain regions (Ashby, Alfonso-Reese,
Turken, & Waldron, 1998; Ashby & Waldron, 2000; E. E.
Smith, Patalano, & Jonides, 1998).

In developing a similar distinction between similarity-
based and rule-based categorization, Sloman (1996) intro-
duced the notion that the two systems can simultaneously
generate different solutions to a reasoning problem. For ex-
ample, Rips (1989; see also Rips & Collins, 1993) asked sub-
jects to imagine a 3 in. (7.62 cm) round object, and then
asked whether the object is more similar to a quarter or a
pizza, and whether the object is more likely to be a pizza or a
quarter. There is a tendency for the object to be judged as
more similar to a quarter, but as more likely to be a pizza. The
rule that quarters must not be greater than 1 in. plays a larger
role in the categorization decision than in the similarity judg-
ment, causing the two judgments to dissociate. By Sloman’s
analysis, the tension we feel about the categorization of the
3-in. object stems from the two different systems’ indicating
incompatible categorizations. Sloman argues that the rule-
based system can suppress the similarity-based system but
cannot completely suspend it. When Rips’s experiment is re-
peated with a richer description of the object to be catego-
rized, categorization again tracks similarity, and people tend
to choose the quarter for both the categorization and similar-
ity choices (E. E. Smith & Sloman, 1994).

Prototypes

Just as the active hypothesis-testing approach of the classical
view was a reaction against the passive stimulus-response
association approach, so the prototype model was developed
as a reaction against what was seen as the overly analytic,
rule-based classical view. Central to Eleanor Rosch’s devel-
opment of prototype theary is the notion that concepts are or-
ganized around family resemblances rather than features that
are individually necessary and jointly sufficient for catego-
rization (Mervis & Rosch, 1981; Rosch, 1975; Rosch &
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Mervis, 1975; see also the chapters in this volume by
Capaldi, by Palmer, and by Treiman et al.). The prototype for
a category consists of the most common attribute values as-
sociated with the members of the category, and can be empir-
ically derived by the previously described method of asking
subjects to generate a list of attributes for several members of
a category. Once prototypes for a set of concepts have been
determined, categorizations can be predicted by determining
how similar an object is to each of the prototypes. The likeli-
hood of placing an object into a category increases as it
becomes more similar to the category’s prototype and less
similar to other category prototypes (Rosch & Mervis, 1975).

This prototype model can naturally deal with the three
problems that confronted the classical view. It is no problem
if defining rules for a category are difficult or impossible to
devise. If concepts are organized around prototypes, then
only characteristic (not necessary or sufficient) features are
expected. Unclear category boundaries are expected if ob-
jects are presented that are approximately equally similar to
prototypes from more than one concept. Objects that clearly
belong to a category may still vary in their typicality because
they may be more similar to the category’s prototype than to
any other category’s prototype, but they still may differ in
how similar they are to the prototype. Prototype models do
not require “fuzzy” boundaries around concepts (Hampton,
1993), but prototype similarities are based on commonalities
across many attributes and are consequently graded, and lead
naturally to categories with graded membership.

A considerable body of data has been amassed that sug-
gests that prototypes have cognitively important functions.
The similarity of an item to its category prototype (in terms
of featural overlap) predicts the results from several converg-
ing tasks. Somewhat obviously, it is correlated with the aver-
age rating the item receives when subjects are asked to rate
how good an example the item is of its category (Rosch,
1975). It is correlated with subjects’ speed in verifying state-
ments of the form “An [item] is a [category name]” (E. E.
Smith, Shoben, & Rips, 1974). It is correlated with subjects’
frequency and speed of listing the item when asked to supply
members of a category (Mervis & Rosch, 1981). It is corre-
lated with the probability of inductively extending a property
from the item to other members of the category (Rips, 1975).
Taken in total, these results indicate that different members of
the same category differ in how typical they are of the cate-
gory, and that these differences have a strong cognitive im-
pact. Many natural categories seem to be organized not
around definitive boundaries, but by graded typicality to the
category’s prototype.

The prototype model described previously generates cate-
gory prototypes by finding the most common attribute values

shared among category members. An alternative conception
views a prototype as the central tendency of continuously
varying attributes. If the four observed members of a lizard
category had tail lengths of 3, 3, 3, and 7 in., the former pro-
totype model would store a value of 3 (the modal value) as
the prototype’s tail length, whereas the central tendency
model would store a value of 4 (the average value). The cen-
tral tendency approach has proven useful in modeling
categories composed of artificial stimuli that vary on contin-
uous dimensions. For example, Posner and Keele’s (1968)
classic dot-pattern stimuli consisted of nine dots positioned
randomly or in familiar configurations on a 30 X 30 invisible
grid. Each prototype was a particular configuration of dots,
but during categorization training, subjects never saw the
prototypes themselves. Instead, they saw distortions of the
prototypes obtained by shifting each dot randomly by a small
amount. Categorization training involved subjects’ seeing dot
patterns, guessing their category assignment, and receiving
feedback indicating whether their guesses were correct or
not. During a transfer stage, Posner and Keele found that sub-
jects were better able to categorize the never-before-seen
category prototypes than they were to categorize new distor-
tions of those prototypes. In addition, subjects’ accuracy in
categorizing distortions of category prototypes was strongly
correlated with the proximity of those distortions to the -
never-before-seen prototypes. The authors interpreted these
results as suggesting that prototypes are extracted from dis-
tortions, and used as a basis for determining categorizations
(see also Homa, Sterling, & Trepel, 1981).

Exemplars

Exemplar models deny that prototypes are explicitly ex-
tracted from individual cases, stored in memory, and used to
categorize new objects. Instead, in exemplar models, a con-
ceptual representation consists of only those actual, individ-
ual cases that one has observed. The prototype representation
for the category bird consists of the most typical bird, or an
assemblage of the most common attribute values across all
birds, or the central tendency of all attribute values for ob-
served birds. By contrast, an exemplar model represents the
category bird by representing all of the instances (exemplars)
that belong to this category (Brooks, 1978; Estes, 1986,
1994; Hintzman, 1986; Kruschke, 1992; Lamberts, 1998,
2000; Logan, 1988; Medin & Schaffer, 1978; Nosofsky,
1984, 1986; see also the chapter by Capaldi in this volume).

Although the prime motivation for these models has been
to provide good fits to results from human experiments, com-
puter scientists have pursued similar models with the aim to
exploit the power of storing individual exposures to stimuli in



a relatively raw, unabstracted form. Exemplar, instance-
based (Aha, 1992), view-based (Tarr & Gauthier, 1998),
case-based (Schank, 1982), nearest neighbor (Ripley, 1996),
configural cue (Gluck & Bower, 1990), and vector quantiza-
tion (Kohonen, 1995) models all share the fundamental
insight that novel patterns can be identified, recognized, or
categorized by giving the novel patterns the same response
that was learned for similar, previously presented patterns.
By creating representations for presented patterns, not only is
it possible to respond to repetitions of these patterns; it is also
possible to give responses to novel patterns that are likely to
be correct by sampling responses to old patterns, weighted by
their similarity to the novel patterns. Consistent with these
models, psychological evidence suggests that people show
good transfer to new stimuli in perceptual tasks only to the
extent that the new stimuli superficially resemble previously
learned stimuli (Kolers & Roediger, 1984; Palmeri, 1997).

The frequent inability of human generalization to tran-
scend superficial similarities might be considered evidence
for either human stupidity or laziness. To the contrary, if a
strong theory about which stimulus features promote valid
inductions is lacking, the strategy of least commitment is to
preserve the entire stimulus in its full richness of detail
(Brooks, 1978). That is, by storing entire instances and
basing generalizations on all of the features of these in-
stances, one can be confident that one’s generalizations are
not systematically biased. It has been shown that in many sit-
uations, categorizing new instances by their similarity to old
instances maximizes the likelihood of categorizing the new
instances correctly (Ashby & Maddox, 1993; McKinley &
Nosofsky, 1995; Ripley, 1996). Furthermore, if information
later becomes available that specifies which properties are
useful for generalizing appropriately, then preserving entire
instances will allow these properties to be recovered. Such
properties might be lost and unrecoverable if people were
less “lazy” in their generalizations from instances.

Given these considerations, it is understandable that peo-
ple often use all of the attributes of an object even when a
task demands the use of specific attributes. Doctors’ diag-
noses of skin disorders are facilitated when they are similar to
previously presented cases, even when the similarity is based
on attributes that are known to be irrelevant for the diagnosis
(Brooks, Norman, & Allen, 1991). Even when subjects know
a simple, clear-cut rule for a perceptual classification, perfor-
mance is better on frequently presented items than rare items
(Allen & Brooks, 1991). Consistent with exemplar models,
responses to stimuli are frequently based on their overall sim-
ilarity to previously exposed stimuli.

The exemplar approach assumes that a category is repre-
sented by the category exemplars that have been encoun-
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tered, and that categorization decisions are based on the
similarity of the object to be categorized to all of the exem-
plars of each relevant category. As such, as an item becomes
more similar to the exemplars of Category A (or less similar
to the exemplars of other categories), then the probability that
it will be placed in Category A increases. Categorization
judgments may shift if an item is approximately equally close
to two sets of exemplars, because probabilistic decision rules
are typically used. Items will vary in their typicality to a cat-
egory as long as they vary in their similarity to the aggregate
set of exemplars.

The exemplar approach to categorization raises a number
of questions. First, once one has decided that concepts are to
be represented in terms of sets of exemplars, the obvious ques-
tion remains: How are the exemplars to be represented? Some
exemplar models use a featural or attribute-value representa-
tion for each of the exemplars (Hintzman, 1986; Medin &
Schaffer, 1978). Another popular approach is to represent ex-
emplars as points in a multidimensional psychological space.
These points are obtained by measuring the subjective simi-
larity of every object in a set to every other object. Once an
N X N matrix of similarities between N objects has been de-
termined by similarity ratings, perceptual confusions, sponta-
neous sortings, or other methods, a statistical technique called
multidimensional scaling (MDS) finds coordinates for the ob-
jects in a D-dimensional space that allow the N X N matrix of
similarities to be reconstructed with as little error as possible
(Nosofsky, 1992). Given that D is typically smaller than N, a
reduced representation is created in which each object is rep-
resented in terms of its values on D dimensions. Distances be-
tween objects in these quantitatively derived spaces can be
used as the input to exemplar models to determine item-to-
exemplar similarities. These MDS representations are useful
for generating quantitative exemplar models that can be fit to
human categorizations and similarity judgments, but these
still beg the question of how a stand-alone computer program
or a person would generate these MDS representations.
Presumably, there is some human process that computes ob-
ject representations and can derive object-to-object similari-
ties from them, but this process is not currently modeled by
exemplar models (for steps in this direction, see Edelman,
1999).

A second question for exemplar models is, If exemplar
models do not explicitly extract prototypes, how can they ac-
count for results that concepts are organized around proto-
types? A useful place to begin is by considering Posner and
Keele’s (1968) result that the never-before-seen prototype is
categorized better than new distortions based on the proto-
type. Exemplar models have been able to model this result
because a categorization of an object is based on its summed
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similarity to all previously stored exemplars (Medin &
Schaffer, 1978; Nosofsky, 1986). The prototype of a category
will, on average, be more similar to the training distortions
than are new distortions because the prototype was used to
generate all of the training distortions. Without our positing
the explicit extraction of the prototype, the cumulative effect
of many exemplars in an exemplar model can create an emer-
gent, epiphenomenal advantage for the prototype.

Given the exemplar model’s account of prototype catego-
rization, one might ask whether predictions from exemplar
and prototype models differ. In fact, they typically do, in
large part because categorizations in exemplar models are not
simply based on summed similarity to category exemplars,
but to similarities weighted by the proximity of an exemplar
to the item to be categorized. In particular, exemplar models
have mechanisms to bias categorization decisions so that
they are more influenced by exemplars that are similar to
items to be categorized. In Medin and Schaffer’s (1978) con-
text model, this is achieved through computing the similarity
between objects by multiplying rather than adding their sim-
ilarities on each of their features. In Hintzman’s (1986)
Minerva model, this is achieved by raising object-to-object
similarities to a power of 3 before summing them together.
In Nosofsky’s Generalized Context Model (1986), this is
achieved by basing object-to-object similarities on an expo-
nential function of the objects’ distance in an MDS space.
With these quantitative biases for close exemplars, the exem-
plar model does a better job of predicting categorization ac-
curacy for Posner and Keele’s experiment than the prototype
model because it can also predict that familiar distortions will
be categorized more accurately than novel distortions that are
equally far removed from the prototype (Shin & Nosofsky,
1992).

A third question for exemplar models is, In what way are
concept representations economical if every experienced
exemplar is stored? It is certainly implausible with large real-
world categories to suppose that every instance ever experi-
enced is stored in a separate trace. However, more realistic
exemplar models may either store only part of the information
associated with an exemplar (Lassaline & Logan, 1993), or
only some of the exemplars (Aha, 1992; Palmeri & Nosofsky,
1995). One particularly interesting way of conserving space
that has received empirical support (Barsalou, Huttenlocher,
& Lamberts, 1998) is to combine separate events that all con-
stitute a single individual into a single representation. Rather
than passively registering every event as distinct, people seem
naturally to consolidate events that refer to the same individ-
ual. If an observer fails to register the difference between a
new exemplar and a previously encountered exemplar (e.g.,
two similar-looking chihuahuas), then he or she may combine

the two, resulting in an exemplar representation that is a blend
of two instances.

Category Boundaries

Another notion is that a concept representation describes the
boundary around a category. The prototype model would rep-
resent the four categories of Figure 22.1 in terms of the trian-
gles. The exemplar model represents the categories by the
circles. The category boundary model would represent the
categories by the four dividing lines between the categories.
This view has been most closely associated with the work of
Ashby and his colleagues (Ashby, 1992; Ashby et al., 1998;
Ashby & Gott, 1988; Ashby & Maddox, 1993; Ashby &
Townsend, 1986; Maddox & Ashby, 1993). It is particularly
interesting to contrast the prototype and category boundary
approaches, because their representational assumptions are
almost perfectly complementary. The prototype model repre-
sents a category in terms of its most typical member—the ob-
ject in the center of the distribution of items included in the
category. The category boundary model represents categories
by their periphery, not their center.

An interesting phenomenon to consider with respect to
whether centers or peripheries of concepts are representation-
ally privileged is categorical perception. According to this
phenomenon, people are better able to distinguish between
physically different stimuli when the stimuli come from
different categories than when they come from the same
category (see Harnad, 1987, for several reviews of re-
search; see also the chapters in this volume by Fowler and
by Treiman et al.). The effect has been best documented for
speech phoneme categories. For example, Liberman, Harris,
Hoffman, and Griffith (1957) generated a continuum of
equally spaced consonant-vowel syllables going from /be/ to
/de/. Observers listened to three sounds—A followed by B
followed by X—and indicated whether X was identical to A
or B. Subjects performed the task more accurately when syl-
lables A and B belonged to different phonemic categories
than when they were variants of the same phoneme, even
when physical differences were equated.

Categorical perception effects have been observed for vi-
sual categories (Calder, Young, Perrett, Etcoff, & Rowland,
1996) and for arbitrarily created laboratory -categories
(Goldstone, 1994b). Categorical perception could emerge
from either prototype or boundary representations. An item to
be categorized might be compared to the prototypes of two
candidate categories. Increased sensitivity at the category
boundary would exist because people represent items in
terms of the prototypes to which they are closest. Items that
fall on different sides of a boundary would have very different



representations because they would be closest to different
prototypes (Liberman et al., 1957). Alternatively, the bound-
ary itself might be represented as a reference point, and as
pairs of items move closer to the boundary, it becomes easier
to discriminate between them because of their proximity to
this reference point (Pastore, 1987).

Computational models have been developed that operate
on both principles. Following the prototype approach,
Harnad, Hanson, and Lubin (1995) describe a neural network
in which the representation of an item is “pulled” toward the
prototype of the category to which it belongs. Following the
boundaries approach, Goldstone, Steyvers, Spencer-Smith,
and Kersten (2000) describe a neural network that learns to
strongly represent critical boundaries between categories by
shifting perceptual detectors to these regions. Empirically,
the results are mixed. Consistent with prototypes’ being rep-
resented, some researchers have found particularly good dis-
criminability close to a familiar prototype (Acker, Pastore, &
Hall, 1995; McFadden & Callaway, 1999). Consistent with
boundaries’ being represented, other researchers have found
that the sensitivity peaks associated with categorical percep-
tion heavily depend on the saliency of perceptual cues at the
boundary (Kuhl & Miller, 1975). Rather than being arbitrar-
ily fixed, a category boundary is most likely to occur at a
location where a distinctive perceptual cue, such as the dif-
ference between an aspirated and unaspirated speech sound,
is present. A possible reconciliation is that information about
either the center or periphery of a category can be repre-
sented, and that boundary information is more likely to be
represented when two highly similar categories must be fre-
quently discriminated and there is a salient reference point
for the boundary.

Different versions of the category boundary approach, il-
lustrated in Figure 22.2, have been based on different ways of
partitioning categories (Ashby & Maddox, 1998). With inde-
pendent decision boundaries, category boundaries must be
perpendicular to a dimensional axis, forming rules such as
Category A items are larger than 3 cm, irrespective of their
color. This kind of boundary is appropriate when the dimen-
sions that make up a stimulus are difficult to integrate (Ashby
& Gott, 1988). With minimal distance boundaries, a Category
A response is given if and only if an object is closer to the
Category A prototype than the Category B prototype. The de-
cision boundary is formed by finding the line that connects
the two categories’ prototypes, and creating a boundary that
bisects and is orthogonal to this line. The optimal boundary is
the boundary that maximizes the likelihood of correctly cate-
gorizing an object. If the two categories have the same
patterns of variability on their dimensions, and people use in-
formation about variance to form their boundaries, then the
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Optimal boundaries

General quadratic

Figure 22.2 The notion that categories are represented by their boundaries
can be constrained in several ways. Boundaries can be constrained to be
perpendicular to a dimensional axis, to be equally close to prototypes for
neighboring categories, to produce optimal categorization performance, or
(loosely constrained) to be a quadratic function.

optimal boundary will be a straight line. If the categories dif-
fer in variability, then the optimal boundary will be described
by a quadratic equation (Ashby & Maddox, 1993, 1998). A
general quadratic boundary is any boundary that can be de-
scribed by a quadratic equation.

One difficulty with representing a concept by a boundary
is that the location of the boundary between two categories
depends on several contextual factors. For example, Repp
and Liberman (1987) argue that categories of speech sounds
are influenced by order effects, adaptation, and the surround-
ing speech context. The same sound that is halfway between
[pa] and [ba] will be categorized as /pa/ if preceded by sev-
eral repetitions of a prototypical [ba] sound, but categorized
as /ba/ if preceded by several [pa] sounds. For a category
boundary representation to accommodate this, two category
boundaries would need to hypothesized—a relatively perma-
nent category boundary between /ba/ and /pa/, and a second
boundary that shifts depending upon the immediate context.
The relatively permanent boundary is needed because the
contextualized boundary must be based on some earlier in-
formation. In many cases, it is more parsimonious to hypoth-
esize representations for the category members themselves,
and to view category boundaries as side effects of the com-
petition between neighboring categories. Context effects are
then explained simply by changes to the strengths associated
with different categories. By this account, there may be no
reified boundary around one’s cat concept that causally af-
fects categorizations. When asked about a particular object
we can decide whether it is a cat, but this is done by comparing
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the evidence in favor of the object’s being a cat to its being
something else.

Theories

The representation approaches considered thus far all work
irrespectively of the actual meaning of the concepts. This is
both an advantage and a liability. It is an advantage because it
allows the approaches to be universally applicable to any
kind of material. They share with inductive statistical tech-
niques the property that they can operate on any data set once
the data set is formally described in terms of numbers, fea-
tures, or coordinates. However, the generality of these ap-
proaches is also a liability if the meaning or semantic content
of a concept influences how it is represented. While few
would argue that statistical t-tests are appropriate only for
certain domains of inquiry (e.g., testing political differences,
but not disease differences), many researchers have argued
that the use of purely data-driven, inductive methods for con-
cept learning are strongly limited and modulated by the back-
ground knowledge one has about a concept (Carey, 1985;
Gelman & Markman, 1986; Keil, 1989; Medin, 1989;
Murphy & Medin, 1985).

People’s categorizations seem to depend on the theories
they have about the world (for reviews, see Komatsu, 1992;
Medin, 1989). Theories involve organized systems of knowl-
edge. In making an argument for the use of theories in cate-
gorization, Murphy and Medin (1985) provide the example
of a man jumping into a swimming pool fully clothed. This
man may be categorized as drunk because we have a theory
of behavior and inebriation that explains the man’s action.
Murphy and Medin argue that the categorization of the man’s
behavior does not depend on matching the man’s features to
those of the category drunk. It is highly unlikely that the cat-
egory drunk would have such a specific feature as jumps
into pools fully clothed. It is not the similarity between the
instance and the category that determines the instance’s clas-
sification; it is the fact that our category provides a theory
that explains the behavior.

Other researchers have empirically supported the dissoci-
ation between theory-derived categorization and similarity.
In one experiment, Carey (1985) observes that children
choose a toy monkey over a worm as being more similar to a
human, but that when they are told that humans have spleens,
are more likely to infer that the worm has a spleen than that
the toy monkey does. Thus, the categorization of objects into
spleen and no-spleen groups does not appear to depend on
the same knowledge that guides similarity judgments. Carey
argues that even young children have a theory of living
things. Part of this theory is the notion that living things have

self-propelled motion and rich internal organizations.
Children as young as 3 years of age make inferences about
an animal’s properties on the basis of its category label
even when the label opposes superficial visual similarity
(Gelman & Markman, 1986; see also the chapter by Treiman
et al. in this volume).

Using different empirical techniques, Keil (1989) has
come to a similar conclusion. In one experiment, children are
told a story in which scientists discover that an animal that
looks exactly like a raccoon actually contains the internal or-
gans of a skunk and has skunk parents and skunk children.
With increasing age, children increasingly claim that the ani-
mal is a skunk. That is, there is a developmental trend for
children to categorize on the basis of theories of heredity and
biology rather than on visual appearance. In a similar experi-
ment, Rips (1989) shows an explicit dissociation between
categorization judgments and similarity judgments in adults.
An animal that is transformed (by toxic waste) from a bird
into something that looks like an insect is judged by subjects
to be more similar to an insect, but is also judged to be a
bird still. Again, the category judgment seems to depend on
biological, genetic, and historical knowledge, whereas the
similarity judgments seems to depend more on gross visual
appearance.

Researchers have explored the importance of background
knowledge in shaping our concepts by manipulating this
knowledge experimentally. Concepts are more easily learned
when a learner has appropriate background knowledge, indi-
cating that more than “brute” statistical regularities underlie
our concepts (Pazzani, 1991). Similarly, when the features of
a category can be connected through prior knowledge, cate-
gory learning is facilitated (Murphy & Allopenna, 1994;
Spalding & Murphy, 1999). Even a single instance of a cate-
gory can allow one to form a coherent category if background
knowledge constrains the interpretation of this instance
(Ahn, Brewer, & Mooney, 1992). Concepts are dispropor-
tionately represented in terms of concept features that are
tightly connected to other features (Sloman, Love, & Ahn,
1998).

Forming categories on the basis of data-driven, statistical
evidence and forming them based upon knowledge-rich the-
ories of the world seem like strategies fundamentally at odds
with each other. Indeed, this is probably the most basic
difference between theories of concepts. However, these ap-
proaches need not be mutually exclusive. Even the most
outspoken proponents of theory-based concepts do not claim
that similarity-based or statistical approaches are not also
needed (Murphy & Medin, 1985). Moreover, some re-
searchers have suggested integrating the two approaches.
Heit (1994, 1997) describes a similarity-based, exemplar



model of categorization that incorporates background knowl-
edge by storing category members as they are observed (as
with all exemplar models), but also storing never-seen in-
stances that are consistent with the background knowledge.
Choi, McDaniel, and Busemeyer (1993) described a neural
network model of concept learning that does not begin with
random or neutral connections between features and concepts
(as is typical), but begins with theory-consistent connections
that are relatively strong. Both approaches allow domain-
general category learners to also have biases toward learning
categories consistent with background knowledge.

Summary to Representation Approaches

One cynical conclusion to reach from the preceding alterna-
tive approaches is that a researcher begins with a theory,
then tends to find evidence consistent with the theory (a re-
sult that is meta-analytically consistent with a theory-based
approach!). Although this state of affairs is typical through-
out the field of psychology, it is particularly rife in concept-
learning research because researchers have a significant
amount of flexibility in choosing what concepts they will ex-
perimentally use. Evidence for rule-based categories tends to
be found with categories that are created from simple rules
(Bruner, Goodnow, & Austin, 1956). Evidence for prototypes
tends to be found for categories made up of members that are
distortions around single prototypes (Posner & Keele, 1968).
Evidence for exemplar models is particular strong when
categories include exceptional instances that must be individ-
ually memorized (Nosofsky & Palmeri, 1998; Nosofsky
et al., 1994). Evidence for theories is found when categories
are created that subjects already know something about
(Murphy & Kaplan, 2000). The researcher’s choice of repre-
sentation seems to determine the experiment that is con-
ducted, rather than the experiment’s influencing the choice of
representation.

There may be a grain of truth to this cynical conclusion,
but our conclusions are instead that people use multiple rep-
resentational strategies, and can flexibly deploy these strate-
gies based upon the categories to be learned. From this
perspective, representational strategies should be evaluated
according to their trade-offs and for their fit to the real-world
categories and empirical results. For example, exemplar rep-
resentations are costly in terms of storage demands, but are
sensitive to interactions between features and adaptable to
new categorization demands. There is a growing consensus
that at least two kinds of representational strategy are both
present but separated—rule-based and similarity-based
processes (Erickson & Kruschke, 1998; Pinker, 1991;
Sloman, 1996). Other researchers have argued for separate
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processes for storing exemplars and extracting prototypes
(Knowlton & Squire, 1993; J. D. Smith & Minda, 2000).
Even if one holds out hope for a unified model of concept
learning, it is important to recognize these different represen-
tational strategies as special cases that must be achievable by
the unified model given the appropriate inputs.

CONNECTING CONCEPTS

Although knowledge representation approaches have often
treated conceptual systems as independent networks that
gain their meaning by their internal connections (Lenat &
Feigenbaum, 1991), it is important to remember that con-
cepts are connected to both perception and language.
Concepts’ connections to perception serve to ground them
(Harnad, 1990), and their connections to language allow
them to transcend direct experience and to be transmitted
easily.

Connecting Concepts to Perception

Concept formation is often studied as though it were a modu-
lar process (in the sense of Fodor, 1983). For example,
participants in category-learning experiments are often pre-
sented with verbal feature lists representing the objects to be
categorized. The use of this method suggests an implicit as-
sumption that the perceptual analysis of an object into fea-
tures is complete before one begins to categorize that object.
This may be a useful simplifying assumption, allowing a re-
searcher to test theories of how features are combined to form
concepts. There is mounting evidence, however, that the rela-
tionship between the formation of concepts and the identifi-
cation of features is bidirectional (Goldstone & Barsalou,
1998). In particular, not only does the identification of fea-
tures influence the categorization of an object, but also the
categorization of an object influences the interpretation of
features (Bassok, 1996).

In this section of the chapter, we will review the evidence
for a bidirectional relationship between concept formation
and perception. Evidence for an influence of perception on
concept formation comes from the classic study of Heider
(1972). She presented a paired-associate learning task in-
volving colors and words to the Dani, a population in New
Guinea that has only two color terms. Participants were given
a different verbal label for each of 16 color chips. They were
then presented with each of the chips and asked for the ap-
propriate label. The correct label was given as feedback when
participants made incorrect responses, allowing participants
to learn the new color terms over the course of training.
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The key manipulation in this experiment was that 8 of the
color chips represented English focal colors, whereas 8 rep-
resented colors that were not prototypical examples of one of
the basic English color categories. Both English speakers and
Dani were found to be more accurate at providing the correct
label for the focal color chips than for the nonfocal color
chips, where focal colors are those that have a consistent and
strong label in English. Heider’s (1972) explanation for this
finding was that the English division of the color spectrum
into color categories is not arbitrary, but rather reflects the
sensitivities of the human perceptual system. Because the
Dani share these same perceptual sensitivities with English
speakers, they were better at distinguishing focal colors than
nonfocal colors, allowing them to learn color categories for
focal colors more easily.

Further research provides evidence for a role of perceptual
information not only in the formation but also in the use of
concepts. This evidence comes from research relating to
Barsalou’s (1999) theory of perceptual symbol systems. Ac-
cording to this theory, sensorimotor areas of the brain that are
activated during the initial perception of an event are reacti-
vated at a later time by association areas, serving as a repre-
sentation of one’s prior perceptual experience. Rather than
preserving a verbatim record of what was experienced, how-
ever, association areas only reactivate certain aspects of one’s
perceptual experience, namely those that received attention.
Because these reactivated aspects of experience may be com-
mon to a number of different events, they may be thought of
as symbols, representing an entire class of events. Because
they are formed around perceptual experience, however, they
are perceptual symbols, unlike the amodal symbols typically
employed in symbolic theories of cognition.

Barsalou’s (1999) theory suggests a powerful influence of
perception on the formation and use of concepts. Evidence
consistent with this proposal comes from property verifica-
tion tasks. Solomon and Barsalou (1999) presented partici-
pants with a number of concept words, each followed by a
property word, and asked participants whether each property
was a part of the corresponding concept. Half of the partici-
pants were instructed to use visual imagery to perform the
task, whereas half were given no specific instructions. De-
spite this difference in instructions, participants in both
conditions were found to perform in a qualitatively similar
manner. In particular, reaction times of participants in both
conditions were predicted most strongly by the perceptual
characteristics of properties. For example, participants were
quicker to verify small properties of objects than to verify
large properties. Findings such as this suggest that detailed
perceptual information is represented in concepts and that this
information is used when reasoning about those concepts.

There is also evidence for an influence of concepts on per-
ception. Classic evidence for such an influence comes from
research on the previously described phenomenon of categor-
ical perception. Listeners are much better at perceiving con-
trasts that are representative of different phoneme categories
(Liberman, Cooper, Shankweiler, & Studdert-Kennedy,
1967). For example, listeners can hear the difference in voice
onset time between the words bill and pill, even when this
difference is no greater than the difference between two /b/
sounds that cannot be distinguished. One may simply argue
that categorical perception provides further evidence of
an influence of perception on concepts. In particular, the
phonemes of language may have evolved to reflect the sensi-
tivities of the human perceptual system. Evidence consistent
with this viewpoint comes from the fact that chinchillas are
sensitive to many of the same sound contrasts as are humans,
even though chinchillas obviously have no language (Kuhl &
Miller, 1975; see also the chapter by Treiman et al. in this
volume). There is evidence, however, that the phonemes to
which a listener is sensitive can be modified by experience. In
particular, although newborn babies appear to be sensitive to
all of the sound contrasts present in all of the world’s lan-
guages, a 1-year-old can hear only those sound contrasts pre-
sent in his or her linguistic environment (Werker & Tees,
1984). Thus, children growing up in Japan lose the ability to
distinguish between the /I/ and /r/ phonemes, whereas chil-
dren growing up in the United States retain this ability
(Miyawaki, 1975). The categories of language thus influence
one’s perceptual sensitivities, providing evidence for an in-
fluence of concepts on perception.

Although categorical perception was originally demon-
strated in the context of auditory perception, similar phenom-
ena have since been discovered in vision. For example,
Goldstone (1994b) trained participants to make a category
discrimination in terms of either the size or the brightness of
an object. He then presented those participants with a same-
different task, in which two briefly presented objects were
either the same or varied in terms of size or brightness. Par-
ticipants who had earlier categorized objects on the basis of a
particular dimension were found to perform better at telling
objects apart in terms of that dimension than were control
participants who had been given no prior categorization
training. Moreover, this sensitization of categorically rele-
vant dimensions was most evident at those values of the di-
mension that straddled the boundary between categories.

These findings thus provide evidence that the concepts
that one has learned influence one’s perceptual sensitivities,
in the visual as well as in the auditory modality. Other re-
search has shown that prolonged experience with a domain
such as dogs (Tanaka & Taylor, 1991) or faces (Levin &



Beale, 2000; O’ Toole, Peterson, & Deffenbacher, 1995) leads
to development of a perceptual system that is tuned to these
domains. Goldstone et al. (2000) review other evidence for
conceptual influences on visual perception. Concept learning
appears to be effective both in combining stimulus properties
to create perceptual chunks that are diagnostic for categoriza-
tion (Goldstone, 2000), and in splitting apart and isolating
perceptual dimensions if they are differentially diagnostic for
categorization (Goldstone & Steyvers, 2001).

The evidence reviewed here suggests that there is a strong
interrelationship between concepts and perception, with per-
ceptual information influencing the concepts that one forms
and conceptual information influencing how one perceives
the world. Most theories of concept formation fail to account
for this interrelationship. They instead take the perceptual at-
tributes of a stimulus as a given and try to account for how
these attributes are used to categorize that stimulus.

One area of research that provides an exception to this rule
is research on object recognition. As pointed out by Schyns
(1998), object recognition can be thought of as an example of
object categorization, with the goal of the process being to
identify what kind of object one is observing. Unlike theories
of categorization, theories of object recognition place strong
emphasis on the role of perceptual information in identifying
an object.

Interestingly, some of the theories that have been pro-
posed to account for object recognition have characteristics
in common with theories of categorization. For example,
structural description theories of object recognition (e.g.,
Biederman, 1987; Hummel & Biederman, 1992; Marr &
Nishihara, 1978; see also the chapter by Palmer in this
volume) are similar to prototype theories of categorization in
that a newly encountered exemplar is compared to a sum-
mary representation of a category in order to determine
whether the exemplar is a member of that category. In con-
trast, multiple-views theories of object recognition (e.g.,
Edelman, 1998; Tarr & Biilthoff, 1995; see also Palmer’s
chapter in this volume) are similar to exemplar-based theo-
ries of categorization in that a newly encountered exemplar is
compared to a number of previously encountered exemplars
stored in memory. The categorization of an exemplar is de-
termined either by the exemplar in memory that most closely
matches it or by a computation of the similarities of the new
exemplar to each of a number of stored exemplars.

The similarities in the models proposed to account for
categorization and object recognition suggest that there is
considerable opportunity for cross-talk between these two
domains. For example, theories of categorization could po-
tentially be adapted to provide a more complete account for
object recognition. In particular, they may be able to provide
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an account of not only the recognition of established object
categories, but also the learning of new ones, a problem not
typically addressed by theories of object recognition. Fur-
thermore, theories of object recognition could be adapted to
provide a better account of the role of perceptual information
in concept formation and use. The rapid recent developments
in object recognition research, including the development of
detailed computational, neurally based models (e.g., Perrett,
Oram, & Ashbridge, 1998), suggest that a careful considera-
tion of the role of perceptual information in categorization
can be a profitable research strategy.

Connecting Concepts to Language

Concepts also take part in a bidirectional relationship with
language. In particular, one’s repertoire of concepts may in-
fluence the types of word meanings that one learns, whereas
the language that one speaks may influence the types of con-
cepts that one forms.

The first of these two proposals is the less controversial. It
is widely believed that children come into the process of
vocabulary learning with a large set of unlabeled concepts.
These early concepts may reflect the correlational structure in
the environment of the young child, as suggested by Rosch
et al. (1976). For example, a child may form a concept of dog
around the correlated properties of four legs, tail, wagging,
slobbering, and so forth. The subsequent learning of a word’s
meaning should be relatively easy to the extent that one can
map that word onto one of these existing concepts.

Different kinds of words may vary in the extent to which
they map directly onto existing concepts, and thus some
types of words may be learned more easily than others. For
example, Gentner (1981, 1982; Gentner & Boroditsky, 2001)
has proposed that nouns can be mapped straightforwardly
onto existing object concepts, and that nouns are thus learned
relatively early by children. The relation of verbs to prelin-
guistic event categories, on the other hand, may be less
straightforward. The nature of children’s prelinguistic event
categories is not very well understood, but the available
evidence suggests that they are structured quite differently
from verb meanings. In particular, research by Kersten and
Billman (1997) demonstrated that when adults learned event
categories in the absence of category labels, they formed
those categories around a rich set of correlated properties, in-
cluding the characteristics of the objects in the event, the mo-
tions of those objects, and the outcome of the event. Research
by Cohen and Oakes (1993) has similarly demonstrated that
10-month-old infants learned unlabeled event categories in-
volving correlations among different aspects of an event, in
this case between the agent in an event and the outcome of a
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causal interaction involving that agent. These unlabeled
event categories learned by children and adults differ
markedly from verb meanings. Verb meanings tend to have
limited correlational structure, instead picking out only a
small number of properties of an event (Huttenlocher & Lui,
1979; Talmy, 1985). For example, the verb collide involves
two objects moving into contact with one another, irrespec-
tive of the objects involved or the outcome of this collision.

Verbs thus cannot be mapped directly onto existing event
categories. Instead, language-learning experience is neces-
sary to determine which aspects of an event are relevant and
which aspects are irrelevant to verb meanings. Perhaps as a
result, children learning a variety of different languages have
been found to learn verbs later than nouns (Au, Dapretto, &
Song, 1994; Gentner, 1982; Gentner & Boroditsky, 2000;
but see Gopnik & Choi, 1995, and Tardif, 1996, for possible
exceptions). More generally, word meanings should be easy
to learn to the extent that they can be mapped onto existing
concepts.

There is greater controversy regarding the extent to which
language may influence one’s concepts. Some influences of
language on concepts are fairly straightforward, however.
For example, whether a concept is learned in the presence or
absence of language (e.g., a category label) may influence the
way in which that concept is learned. When categories are
learned in the presence of a category label, a common finding
is one of competition among correlated cues for predictive
strength (Gluck & Bower, 1988; Shanks, 1991). In particular,
more salient cues may overshadow less salient cues, causing
the concept learner to fail to notice the predictiveness of the
less salient cue (Gluck & Bower, 1988; Kruschke, 1992;
Shanks, 1991).

When categories are learned in the absence of a category
label, on the other hand, there is facilitation rather than com-
petition among correlated predictors of category membership
(Billman, 1989; Billman & Knutson, 1996; Cabrera &
Billman, 1996; Kersten & Billman, 1997). The learning of
unlabeled categories has been measured in terms of the learn-
ing of correlations among attributes of a stimulus. For exam-
ple, one’s knowledge of the correlation between a wagging
tail and a slobbering mouth can be used as a measure of one’s
knowledge of the category dog. Billman and Knutson (1996)
used this method to examine the learning of unlabeled cate-
gories of novel animals. They found that participants were
more likely to learn the predictiveness of an attribute when
other correlated predictors were also present.

The key difference between these two concept-learning sit-
uations may be that in the learning of labeled categories, one
piece of information, namely the category label, is singled out
as being important to predict. Thus, when participants can

adequately predict the category label on the basis of a single
attribute, they need not look to additional attributes. On the
other hand, when no one piece of information is singled out, as
in the case of unlabeled categories, participants who have
learned one predictive relation cannot be sure that they have
learned all that they need to learn. As a result, they may con-
tinue looking for additional predictive relations. In doing so,
they may preferentially attend to those attributes that have al-
ready been discovered to be useful, resulting in facilitated
learning of further relations involving those attributes
(Billman & Heit, 1988).

There is thus evidence that the presence of language influ-
ences the way in which a concept is learned. A more contro-
versial suggestion is that the language that one speaks may
influence the types of concepts that one is capable of learn-
ing. This suggestion, termed the linguistic relativity hypothe-
sis, was first made by Whorf (1956) on the basis of apparent
dramatic differences between English and Native American
languages in their expressions of ideas such as time, motion,
and color. For example, Whorf proposed that the Hopi have
no concept of time because the Hopi language provides no
mechanism for talking about time. Many of Whorf’s linguis-
tic analyses have since been debunked (see Pinker, 1994, for
a review), but his theory remains a source of controversy.

Early experimental evidence suggested that concepts were
relatively impervious to linguistic influences. In particular,
Heider’s (1972) finding that the Dani learned new color con-
cepts in a similar fashion to English speakers, despite the fact
that the Dani had only two color words, suggested that con-
cepts were determined by perception rather than by language.
More recently, however, Roberson, Davies, and Davidoff
(2000) attempted to replicate Heider’s findings with another
group of people with a limited color vocabulary, the Berinmo
of New Guinea. In contrast to Heider’s findings, Roberson
et al. found that the Berinmo performed no better at learning
a new color concept for a focal color than for a nonfocal
color. Moreover, the Berinmo performed no better at learning
a category discrimination between green and blue (a distinc-
tion not made in their language) than they did at learning a
discrimination between two shades of green. This result con-
trasted with the results of English-speaking participants, who
performed better at the green-blue discrimination. It also
contrasted with superior Berinmo performance on a discrim-
ination that was present in their language. These results sug-
gest that the English division of the color spectrum may be
more a function of the English language and less a function
of human color physiology than was originally believed.

Regardless of one’s interpretation of the Heider (1972)
and Roberson et al. (2000) results, there are straightforward
reasons to expect at least some influence of language on one’s
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concepts. Homa and Cultice (1984) have demonstrated that
people are better at learning concepts when category labels
are provided as feedback. Thus, at the very least, one may ex-
pect that a concept will be more likely to be learned when it
is labeled in a language than when it is unlabeled. Although
this may seem obvious, further predictions are possible when
this finding is combined with the evidence for influences of
concepts on perception reviewed earlier. In particular, on the
basis of the results of Goldstone (1994b), one may predict
that when a language makes reference to a particular dimen-
sion, thus causing people to learn concepts around that di-
mension, people’s perceptual sensitivities to that dimension
will be increased. This, in turn, will make people who learn
this language more likely to notice further contrasts along
this dimension. Thus, language may influence people’s con-
cepts indirectly through one’s perceptual abilities.

This proposal is consistent with L. B. Smith’s (1999) ac-
count of the apparent shape bias in children’s word learning.
Smith proposed that children learn over the course of early
language acquisition that the shapes of objects are important
in distinguishing different nouns. As a result, they attend
more strongly to shape in subsequent word learning, resulting
in an acceleration in subsequent shape-word learning. Al-
though this proposal is consistent with an influence of lan-
guage on concepts, languages do not seem to differ very
much in the extent to which they refer to the shapes of objects
(Gentner, 1982; Gentner & Boroditsky, 2001), and thus one
would not expect speakers of different languages to differ in
the extent to which they are sensitive to shape.

Languages do differ in other respects, however, most no-
tably in their use of verbs (Gentner & Boroditsky, 2001;
Kersten, 1998). In English, the most frequently used class of
verbs refers to the manner of motion of an object (e.g., run-
ning, skipping, sauntering), or the way in which an object
moves around (Talmy, 1985). In other languages (e.g.,
Spanish), however, the most frequently used class of verbs
refers to the path of an object (e.g., entering, exiting), or its
direction with respect to some external reference point. In
these languages, manner of motion is relegated to an adver-
bial, if it is mentioned at all. If language influences one’s per-
ceptual sensitivities, it is possible that English speakers and
Spanish speakers may differ in the extent to which they are
sensitive to motion attributes such as the path and manner of
motion of an object.

Suggestive evidence in this regard comes from a study by
Naigles and Terrazas (1998). They found that English speak-
ers were more likely to generalize a novel verb to an event in-
volving the same manner of motion and a different path than
to an event involving the same path and a different manner of
motion, whereas Spanish speakers showed the opposite
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tendency. One possible account of this result is that English
speakers attended more strongly to manner of motion than
did Spanish speakers, causing English speakers to be more
likely to map the new verb onto manner of motion. If this
were the case, it would have important implications for learn-
ing a second language. In particular, one may have difficulty
attending to contrasts in a second language that are not ex-
plicitly marked in one’s native language.

Thus, although the evidence for influences of language on
one’s concepts is mixed, there are reasons to believe that
some such influence may take place, if only at the level of at-
tention to different attributes of a stimulus. Proponents of the
universalist viewpoint (e.g., Pinker, 1994) may argue that this
level of influence is a far cry from the strongest interpretation
of Whorf’s hypothesis that language determines the concepts
that one is capable of learning. A more fruitful approach,
however, may be to stop arguing about whether a given result
supports Whorf’s theory and start testing more specific
theories regarding the relationship between language and
concepts.

THE FUTURE OF CONCEPTS
AND CATEGORIZATION

The field of concept learning and representation is notewor-
thy for its large number of directions and perspectives.
Although the lack of closure may frustrate some outside ob-
servers, it is also a source of strength and resilience. With an
eye toward the future, we describe some of the most impor-
tant avenues for future progress in the field.

First, as the previous section suggests, we believe that
much of the progress of research on concepts will be to con-
nect concepts to other concepts (Goldstone, 1996; Landauer
& Dumais, 1997), to the perceptual world, and to language.
One of the risks of viewing concepts as represented by rules,
prototypes, sets of exemplars, or category boundaries is that
one can easily imagine that one concept is independent of
others. For example, one can list the exemplars that are in-
cluded in the concept bird, or describe its central tendency,
without making recourse to any other concepts. However, it
is likely that all of our concepts are embedded in a network in
which each concept’s meaning depends on other concepts as
well as on perceptual processes and linguistic labels. The
proper level of analysis may not be individual concepts, as
many researchers have assumed, but systems of concepts.
The connections between concepts and perception on the one
hand and between concepts and language on the other hand
reveal an important dual nature of concepts. Concepts are
used both to recognize objects and to ground word meanings.
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Working out the details of this dual nature will go a long way
toward understanding how human thinking can be both con-
crete and symbolic.

A second direction is the development of more sophisti-
cated formal models of concept learning. Progress in neural
networks, mathematical models, statistical models, and ratio-
nal analyses can be gauged by several measures: goodness of
fit to human data, breadth of empirical phenomena accom-
modated, model constraint and parsimony, and autonomy
from human intervention. The current crop of models is fairly
impressive in terms of fitting specific data sets, but there is
much room for improvement in terms of their ability to ac-
commodate rich sets of concepts and to process real-world
stimuli without relying on human judgments or hand coding.

A final important direction will be to apply psychological
research on concepts (see also the chapter by Nickerson &
Pew in this volume). Perhaps the most important and relevant
application is in the area of educational reform. Psychologists
have amassed a large amount of empirical research on vari-
ous factors that impact the ease of learning and transferring
conceptual knowledge. The literature contains excellent sug-
gestions on how to manipulate category labels, presentation
order, learning strategies, stimulus format, and category vari-
ability in order to optimize the efficiency and likelihood of
concept attainment. Putting these suggestions to use in class-
rooms, computer-based tutorials, and multimedia instruc-
tional systems could have a substantial positive impact
on pedagogy. This research can also be used to develop
autonomous computer diagnosis systems, user models, infor-
mation visualization systems, and databases that are orga-
nized in a manner consistent with human conceptual systems.
Given the importance of concepts for intelligent thought, it is
not unreasonable to suppose that concept learning research
will be equally important for improving thought processes.
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